ALD-Enabled NanoElectroMechanical Systems

Prof. Victor M. Bright
Department of Mechanical Engineering
University of Colorado Boulder, USA

Abstract

Atomic Layer Deposition (ALD) and Molecular Layer Deposition (MLD) can be effectively used to deposit custom-designed, multi-material layers with atomic resolution on any micro- or nanoscale device surface. The nano-scale ALD/MLD coating can protect the devices from electrical short, charge accumulation, moisture-induced adhesion, wear, corrosion, creep, fatigue or anodic oxidation during short-term prototyping or long-term product life. The nano- and micro-electromechanical systems (N/MEMS) community has been looking for effective antistiction and environmental protection coatings for many years. ALD/MLD films achieve these goals similar to what CVD Si₃N₄ has been for CMOS. As devices further shrink toward nano-scale, ALDbased processes offer a new strategy for depositing conformal and precise films that may have important applications as a novel dielectric, a sacrificial layer for gap control in nanofabrication, or as a structural layer for NEMS. ALD relies on sequential, self-limiting surface reactions to deposit ultra thin films with the following characteristics: ALD film thicknesses can be precisely deposited from a few angstroms to hundreds of nanometers; ALD films can be deposited at low temperatures compatible with CMOS; ALD films are pinhole-free, dense, smooth and highly conformal; ALD films can be deposited on silicon, silicon nitride, metals, polymers, and ceramics; ALD can coat high surface area to volume ratio structures with complex geometries; ALD can deposit dielectric or conductive layers; ALD can deposit hydrophobic or hydrophilic layers covalently bonded to the surface. ALD materials can be selectively etched to create nanoscale gaps and free standing structures. The ALD technologies for N/MEMS, pioneered at the University of Colorado Boulder, represent breakthrough in nano-scale processes that can be used to fabricate custom-designed, multi-material layers with atomic resolution. These methods are proven, mature, and are available to serve the nano-scale systems community.